PHOTOCHEMICAL REACTIONS OF 1-PHENYLPHOSPHOLE OXIDE DIMER

Hideo Tomioka, Yoshimasa Hirano and Yasuji Izawa

Department of Industrial Chemistry, Faculty of Engineering,

Mie University, Tsu, Japan

(Received in Japan 14 October 1974; received in UK for publication 5 November 1974)

In view of the novel photochemical pericyclic fragmentation of 1-phenyl-3-phospholene oxides in our previous investigation,¹ we have examined the photochemical behaviour of 1-phenylphosphole oxide dimer ($\frac{1}{2}$) and found that both the singlet and triplet excited states of 1 are chemically reactive but lead to entirely different products.

Direct irradiation² of $\frac{1}{2}$ (0.9g) in methanol (150ml) for 1 hr. gave a 60% yield of methyl phenylphosphinate ($\frac{2}{2}$)¹ as a sole isolable product. However, all attempts to isolate and/or trap dihydrophosphindole ($\frac{3}{2}$) as a possible resulting product from phosphinidene oxide extrusion were unsuccessful at the present stage. Efficient fragmentation of $\frac{1}{2}$ might

be neccessarily <u>nonlinear</u> disrotatory process, if concerted, because of the geometrical requirements of the fused ring system, which is consistent with our previous observation³ that <u>cis,cis</u>-2,5-dimethyl-1-phenyl-3-phospholene oxide cleaved efficiently in nonlinear disrotatory mode to yield <u>trans,trans-2,4-hexadiene</u>.

Sensitized irradiation² of $\frac{1}{2}$ (1.0g) in 1:3 acetone-benzene (240ml) for 2 hrs., on the other hand, produced a cage product ($\frac{4}{2}$) in nearly quantitative yield: mp 249-250[°] (recrystallized from CHCl₃-pet. ether after column chromatography on silica gel); ir (KBr) at 1440 (P-Ph) and 1182 cm⁻¹ (P=O). The n.m.r. spectrum of $\frac{4}{2}$ showed, in addition to phenyl

protons at 7.38-7.88 ppm, four pairs of saturated methine protons (δ_{CDCl_3}): Ha, 3.72; Hb, 3.34 ; Hc, 3.10; Hd, 2.83. Further evidence on the assignments of methine protons was obtained by adding the shift reagent, tris(dipivalomethano)europium (III),⁴ to a CDCl₃ solution of 4 in varying amount. The relative shifts of Ha, Hb, Hc and Hd obtained from a plot of chemical shift <u>vs</u>. [Eu(DPM)₃]/[4] ratio for each of these methines were 1.00, 0.61, 0.46 and 0.38, respectively. These data are compatible⁵ with the formation of caged adduct 4 by intramolecular [2+2] cycloaddition of the <u>endo</u> Diels-Alder adduct⁶ 1, as observed⁸ in the analogous photochemical cycloaddition of cyclopentadienone dimer.

References and Footnotes

- 1. H. Tomioka, Y. Hirano and Y. Izawa, Tetrahedron Lett., 1865 (1974).
- All irradiations were carried out under N₂ in an immersion apparatus using a quartz well and a 300 watt high pressure Hg lamp.
- 3. H. Tomioka and Y. Izawa, to be published.
- 4. For previous use of this shift reagent in n.m.r. studies of cyclic phosphine oxides, see R.
 B. Wetzel and G. L. Kenyon, J. <u>Amer. Chem. Soc.</u>, <u>94</u>, 9230 (1972).
- 5. Elemental analysis also supported the structure.
- 6. The endo ring juncture has been shown⁷ for a 1-ethoxyphosphole oxide dimer.
- 7. Y. H. Chiu and W. N. Lipscomb, J. Amer. Chem. Soc., 91, 4150 (1969).
- E. Baggiolini, E. G. Herzog, S. Iwasaki, R. Schorta and K. Schaffner, <u>Helv. Chim. Acta</u>, 50, 297 (1967).